Vincent Audigier
  • Home
  • Research
  • Teaching
  • PACKAGES
  • Links

Teaching Activities

Multiple imputation by FCS [JES 2021]
-
tutorial - data - solution

Modelling [2018-2019] lecture
Paris-Dauphine
Teaching hours: 6

- Handling missing values using multiple imputation
- Multiple imputation methods for large data sets

Material :
  • part 1 : slides - script - data 
  • part 2 : slides - script

Data analysis (STA101)[2018-2022] lecture and tutorial
CNAM, Paris
Teaching hours: 75

- Univariate and bivariate analysis
- Principal components methods (PCA, CA, MCA, FAMD) with or without missing values
- Clustering (k-means, hierarchical methods)

Material
  • week 1 : information - lecture - tutorial
  • week 2 : lecture - tutorial
  • week 3 : lecture - tutorial
  • week 4 : lecture - tutorial
  • week 5 : lecture - tutorial
  • week 6 : lecture - tutorial
Mathematical statistics (STA104) [2018] lecture and tutorial
CNAM, Paris
Teaching hours: 75

-    Simulation and MCMC methods
-    Estimation : maximum likelihood, Fischer information, Cramer Rao bound
-    Confidence intervals
-    Tests for means, variances, proportions
-    Tests for paired samples
-    Goodness of fit tests and test of independence
-    Non-parametric statistics

Storage and data mining (STA211)[2018-2022] lecture and supervision of students' projects
CNAM, Paris
Teaching hours: 50
-    Preprocessing
-    Data and strategies for data mining
-    Data mining for modern data

Biostatistic [2017-2019] lecture and tutorials (M1)
Cnam-Pasteur, Paris
Teaching hours: 36

-    Statistical inference (estimator, bias, variance, convergence, central limit theorem, classical confidence intervals)
-    Statistical tests for 2 groups
-    Univariate and bivariate analysis

Assessment of analysis methods for biosciences [2016] tutorials (L1)
Université Paris-Diderot, Paris
Teaching hours: 64

-    Descriptive statistics
-    Elementary probability (independence, condional probabilities, Bayes theorem)
-    Random variables (density function, cumulative distribution function, expectation, variance)
-    Sum of random variables (convergence in distribution, central limit theorem)
-    Statistical tests (Khi-2, Fisher, z-test, Wilcoxon)


Biostatistic and R software [2016-2017] lecture and tutorials (M1)
Université Paris-Diderot, Paris
Teaching hours: 6

-    Statistical inference (estimator, bias, variance, convergence, central limit theorem, classical confidence intervals)
-    Statistical tests for 3 groups (ANOVA, Kruskal-Wallis, Khi-2, Fisher)
-    Statistical tests for categorical variables (Khi-2, Fisher, McNemar)


Modelling [2016-2017] lecture and tutorial (M2)
Université Paris-Diderot, Paris
Teaching hours: 2

-     Handling missing values using multiple imputation


General statistics [2012-2015] tutorials and supervision of students' projects (Licence 2/Master 1)
Agrocampus-Ouest, Rennes
Teaching hours: 160
Video lecture

-    Multiple linear regression
-    Analysis of variance with several factors and interaction
-    Fractional factorial design
-    Principal Components Analysis (PCA)


Analysis of survey data
[2013-2015] tutorials and supervision of students' projects (Licence 3)
Agrocampus-Ouest, Rennes

Teaching hours : 45
Lecture

- 
   Multiple Correspondance Analysis (MCA)
-    
Hierarchical Clustering on Principal Components (HCPC)



Sensometry [2013] tutorials and supervision of students' projects (Licence 3)
Agrocampus-Ouest, Rennes
Teaching hours : 15
Video lecture

-    Characterization of products
-    Performance of a panel
-    Preference mapping

Powered by Create your own unique website with customizable templates.