Analyse bivariée (partie 2)

Vincent Audigier

CNAM, Paris

STA101

Plan

Variables quantitative et qualitative

Rapport de corrélation Test de nullité

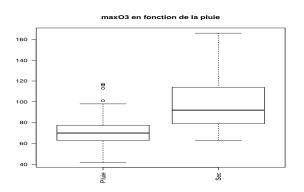
Variables qualitatives

Khi-deux Autres coefficients Test d'indépendance

Vers le cas multivarié

Liaison entre une variable quantitative et qualitative

Lien entre la valeur du pic d'O3 (quantitative) et la présence de pluie (qualitative)?



- Peut-on le quantifier ?
- Ce lien apparent est-il significatif?

Formules de décomposition

On note Y la variable quantitative (Ex : maxO3), X la variable qualitative (Ex : présence de pluie) à K modalités

$$\bar{y} = \frac{1}{n} \sum_{k=1}^{K} n_k \bar{y}_k$$

$$s_Y^2 = \underbrace{\frac{1}{n} \sum_{k=1}^{K} n_k (\bar{y}_k - \bar{y})^2}_{\text{var inter}} + \underbrace{\frac{1}{n} \sum_{k=1}^{K} n_k s_k^2}_{\text{var intra}}$$

avec

- K le nombre de groupes (i.e. nb de modalités de la variable quali)
- n_k l'effectif associé au groupe k
- $ightharpoonup \bar{y}_k$ moyenne de y dans le groupe k
- $ightharpoonup s_k^2$ la variance de y dans le groupe k

$$s_Y^2 = \frac{1}{n} \sum_{k=1}^K n_k (\bar{y}_k - \bar{y})^2 + \frac{1}{n} \sum_{k=1}^K n_k s_k^2$$

$$(y_{kj}-\bar{y}) = (\bar{y}_k-\bar{y})+(y_{kj}-\bar{y}_k)$$

$$s_Y^2 = \frac{1}{n} \sum_{k=1}^K n_k (\bar{y}_k - \bar{y})^2 + \frac{1}{n} \sum_{k=1}^K n_k s_k^2$$

$$(y_{kj} - \bar{y}) = (\bar{y}_k - \bar{y}) + (y_{kj} - \bar{y}_k) (y_{kj} - \bar{y})^2 = (\bar{y}_k - \bar{y})^2 + (y_{kj} - \bar{y}_k)^2 + 2(y_k - \bar{y})(y_{kj} - \bar{y}_k)$$

$$s_Y^2 = \frac{1}{n} \sum_{k=1}^K n_k (\bar{y}_k - \bar{y})^2 + \frac{1}{n} \sum_{k=1}^K n_k s_k^2$$

$$\begin{array}{rcl} \left(y_{kj} - \bar{y}\right) & = & \left(\bar{y}_k - \bar{y}\right) + \left(y_{kj} - \bar{y}_k\right) \\ \left(y_{kj} - \bar{y}\right)^2 & = & \left(\bar{y}_k - \bar{y}\right)^2 + \left(y_{kj} - \bar{y}_k\right)^2 + 2\left(y_k - \bar{y}\right)\left(y_{kj} - \bar{y}_k\right) \\ \sum_k \sum_j \left(y_{kj} - \bar{y}\right)^2 & = & \sum_k \sum_j \left(\bar{y}_k - \bar{y}\right)^2 + \sum_k \sum_j \left(y_{kj} - \bar{y}_k\right)^2 \\ & & + 2\sum_j \sum_i \left(\bar{y}_k - \bar{y}\right)\left(y_{kj} - \bar{y}_k\right) \end{array}$$

$$s_Y^2 = \frac{1}{n} \sum_{k=1}^K n_k (\bar{y}_k - \bar{y})^2 + \frac{1}{n} \sum_{k=1}^K n_k s_k^2$$

$$ns_{Y}^{2} = \sum_{k=1}^{K} n_{k} (\bar{y}_{k} - \bar{y})^{2} + \sum_{k=1}^{K} n_{k} s_{k}^{2} + 2 \sum_{k} (\bar{y}_{k} - \bar{y}) \sum_{j} (y_{kj} - \bar{y}_{k})$$

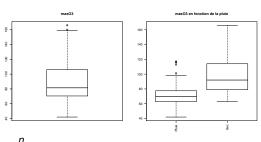
Rapport de corrélation

- Principe: s'il existe un lien, alors la valeur du pic d'O3 n'est pas la même selon qu'il pleuve ou non. On compare les variations des valeurs des pics d'O3 d'un groupe à l'autre à la variation totale des pics d'O3.
- On calcule

$$\eta^{2}(Y,X) = \frac{var \ inter}{var \ totale} = \frac{\frac{1}{n} \sum_{k=1}^{K} n_{k}(\bar{y}_{k} - \bar{y})^{2}}{\frac{1}{n} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

- Propriétés :
 - $ightharpoonup 0 < \eta^2 < 1$
 - ho $\eta^2 = 0$ traduit une absence de lien
 - $\eta^2 = 1$ traduit un lien parfait

Exemple



$ar{y}$	n
90.30	112

Table: maxO3

	\bar{y}_k	n_k
Pluie	73.40	43
Sec	100.84	69

Table: maxO3 selon pluie

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = 88191.68$$

$$\sum_{k=1}^{K} n_k (\bar{y}_k - \bar{y})^2 = 43 \times (73.40 - 90.30)^2 + 69 \times (100.84 - 90.30)^2$$

$$= 19954.15$$

$$\eta^2 = \frac{\text{var inter}}{\text{var totale}} = \frac{19954.15}{88191.68} = 0.226$$

Test de nullité

- le rapport de corrélation varie selon l'échantillon, mais la liaison entre deux variables ne varie que par les variables considérées
- le rapport de corrélation calculé à partir des données est une version empirique d'un coefficient théorique
- ▶ Test de Fisher

NB : par la suite on note η^2 le coefficient théorique, et $\hat{\eta}^2$ son estimation

Test de Fisher

• H_0 : $\eta^2 = 0$ contre H_1 : $\eta^2 \neq 0$

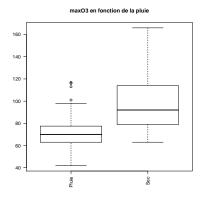
$$F = rac{\hat{\eta}^2 imes (n - K)}{(K - 1)(1 - \hat{\eta}^2)} \sim_{\mathsf{H}_0} Fisher_{
u_2 = n - K}^{
u_1 = K - 1}$$

- Test unilatéral
 - on calcule F^{obs} que l'on compare à $q_{n-K}^{K-1}(1-\alpha)$
 - ▶ si $F^{obs} < q_{n-K}^{K-1}(1-\alpha)$, on ne rejette pas H₀ (au risque α) On ne peut pas dire qu'il y ait une liaison entre X et Y
 - ▶ si $F^{obs} \ge q_{n-K}^{K-1}(1-\alpha)$, on rejette H₀ (au risque α) On conclut que X et Y sont liées
- Attention! Un test significatif ne signifie pas une association forte.

Limites

- La distribution sous l'hypothèse nulle n'est vraie que si les variances dans les différents groupes sont identiques
- En pratique, on compare graphiquement les distributions des données dans chaque groupe
- Quand cette hypothèse n'est pas raisonnable, il faut utiliser d'autres tests (e.g. Test de Welch si K = 2)

Exemple



- ▶ On observe $\eta^2 = 0.226$
- Mais les variances au sein des groupes ne sont pas identiques
- ► Test de Welch (p.val< 10⁻⁶)

Plan

Variables quantitative et qualitative

Rapport de corrélation Test de nullité

Variables qualitatives

Khi-deux Autres coefficients Test d'indépendance

Vers le cas multivarié

Analyse de la liaison entre deux variables qualitatives

- $ightharpoonup X_1$ et X_2 deux variables à K et K' modalités
- Présentation sous la forme d'une table de contingence
- Exemple : direction du vent et présence de pluie

	Est	Nord	Ouest	Sud	n _{i.}
Pluie	2	10	26	5	43
Sec	8	21	24	16	69
n _{.j}	10	31	50	21	112

Table: Table de contingence

- $ightharpoonup n_{ij}$ est l'effectif des individus tels que $X_1 = m_i$ et $X_2 = m_j$
- $n_{i.} = \sum_{j} n_{ij}$ total marginal colonne $n_{.j} = \sum_{i} n_{ij}$ total marginal ligne
- ► Comment mesurer une liaison entre ces deux variables ?

Profils-lignes, profils-colonnes

On appelle **profils-lignes** (resp. prof.-**colonnes**) le tableau des fréquences conditionnelles $\frac{n_{ij}}{n_{i.}}$ (resp. $\frac{n_{ij}}{n_{.j}}$)

	Est	Nord	Ouest	Sud	n _i .
Pluie	2	10	26	5	43
Sec	8	21	24	16	69
n_j	10	31	50	21	112

Table: Table de contingence

	Est	Nord	Ouest	Sud
Pluie	0.2	0.3	0.5	0.2
Sec	8.0	0.7	0.5	8.0
Somme	1.0	1.0	1.0	1.0

 Est
 Nord
 Ouest
 Sud

 Pluie
 0.0
 0.2
 0.6
 0.1
 1

 Sec
 0.1
 0.3
 0.3
 0.2
 1

Table: Profils colonnes

Table: Profils lignes

Absence de lien ⇒ profils lignes (resp. colonnes) identiques (égales aux fréquences marginales)

$$\frac{n_{ij}}{n_i} = \frac{n_{.j}}{n}$$
 pour tout *i*

Représentation graphique

- visualiser la liaison = visualiser les différences des profils
- graphique en mosaïque (*mosaic plot*)

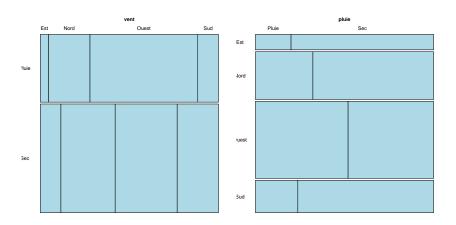


Figure: mosaic plots des profils-lignes et profils-colonnes

Khi-deux

Mesurer la liaison entre deux variables qualitatives, en regardant la différence entre les effectifs conjoints observés et ceux attendus sous l'hypothèse d'indépendance

$$\chi^{2} = \sum_{(i,j)} \frac{(\text{effectifs observés} - \text{effectifs attendus})^{2}}{\text{effectifs attendus}}$$

$$= \sum_{(i,j)} \frac{\left(n_{ij} - \left(\frac{n_{.j}}{n} \times \frac{n_{i.}}{n} \times n\right)\right)^{2}}{\left(\frac{n_{.j}}{n} \times \frac{n_{i.}}{n} \times n\right)}$$

$$= \sum_{(i,j)} \frac{\left(n_{ij} - \left(n_{.j} \times n_{i.}/n\right)\right)^{2}}{\left(n_{.j} \times n_{i.}/n\right)}$$

- ▶ Différence faible → absence de liaison
- ▶ Différence grande → liaison forte

Exemple

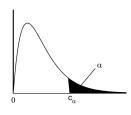
	Est	Nord	Ouest	Sud	Somme
Pluie	2	10	26	5	43
Sec	8	21	24	16	69
Somme	10	31	50	21	112

	Son	nme	10	31	50	21	112	<u>!</u>	2		$(2-3.84)^2$
		Table	: Eff	ectif	s obs	ervé	és		χ^{-}	=	3.84
											$(10 - 11.90)^2$
										+	11.90
					;	7		me	=	+	
		Est		Nord	C Fad		Sud	Somr		+	$(16-12.94)^2$
Р	luie	3.84	11	.90	19.20)	8.06	43	-	'	12.94
,	Sec	6.16	19	.10	30.80) 1	2.94	69		=	7.73
Som	ıme	10		31	50)	21	112	_		

Table: Effectifs attendus sous l'hypothèse d'indépendance

Interprétation

- Le critère du chi-deux traduit l'écart à l'indépendance
- Toujours supérieur à 0, mais n'est pas toujours inférieur à 1
- Pour déterminer si la valeur observée est grande ou non, on utilise des arguments statistiques
 - sous l'hypothèse d'indépendance, on s'attend à ce que la distribution du critère soit une loi du χ^2 à $(K-1) \times (K'-1)$ degrés de liberté (si effectifs attendus ≥ 5)
 - calculer la probabilité (sous l'hypothèse d'indépendance) d'observer une distance au moins aussi grande que celle observée sur les données



$-\alpha$	0,9	0,5	0,3	0,2	0,1	0,05
ν						
1	0,016	0,455	1,074	1,642	2,706	3,841
2	0,211	1,386	2,408	3,219	4,605	5,991
3	0,584	2,366	3,665	4,642	6,251	7,815
:	:	:	:	:	:	:

Autres coefficients

- ▶ Il existe d'autres coefficients basés sur le χ^2 qui visent à le normaliser entre 0 et 1
- Par exemple : le coefficient C de Cramer et le T de Tschuprow

$$C = \sqrt{\frac{\chi^2/n}{(\min(K,K')-1)}}$$

$$T = \sqrt{\frac{\chi^2/n}{\sqrt{(K-1)(K'-1)}}}$$

 $ightharpoonup 0 \le T \le C \le 1$

Ex:

$$C = \sqrt{\frac{7.73/112}{(\min(2,4)-1)}} = 0.26 \ T = \sqrt{\frac{7.73/112}{\sqrt{1\times3}}} = 0.20$$

Test d'indépendance

- ► *H*₀: indépendance vs *H*₁: non-indépendance
- ▶ Statistique de test : χ^2
- ▶ Loi sous H_0 : loi du chi-deux à (K-1)(K'-1) ddl (si effectifs attendus ≥ 5)
- ▶ zone de rejet : $[c_{1-\alpha}; +\infty[$ avec $c_{1-\alpha}$ le quantile d'ordre $1-\alpha$ de la loi du chi-deux

Plan

Variables quantitative et qualitative

Rapport de corrélation Test de nullité

Variables qualitatives

Khi-deux Autres coefficients Test d'indépendance

Vers le cas multivarié

Matrices des covariances

Pour des variables **quantitatives** $p \ge 3$, on peut calculer

- toutes les variances des variables
- toutes les covariances entre les couples de variables
- ightharpoonup l'ensemble peut se présenter sous la forme d'une matrice $V_{p \times p}$
 - avec les variances de chaque variable sur la diagonale
 - les covariances sur les élément hors diagonale
- V est dite matrice de variance-covariance

	maxO3	T9	T12	T15	Ne9	Ne12	Ne15	Vx9	Vx12	Vx15	maxO3v
maxO3	794.5	61.6	89.4	98.9	-45.5	-41.2	-31.4	39.2	33.9	31.0	545.6
T9	61.6	9.8	11.1	12.0	-3.9	-3.4	-2.4	2.1	1.9	1.5	51.4
T12	89.4	11.1	16.3	17.3	-6.1	-6.1	-4.3	4.6	3.5	3.1	64.4
T15	98.9	12.0	17.3	20.5	-6.9	-6.7	-6.1	5.4	4.4	3.6	72.8
Ne9	-45.5	-3.9	-6.1	-6.9	6.7	4.7	3.3	-3.4	-3.8	-3.6	-20.3
Ne12	-41.2	-3.4	-6.1	-6.7	4.7	5.2	3.8	-3.0	-3.3	-2.8	-23.4
Ne15	-31.4	-2.4	-4.3	-6.1	3.3	3.8	5.4	-2.5	-2.8	-2.5	-20.3
Vx9	39.2	2.1	4.6	5.4	-3.4	-3.0	-2.5	6.9	5.5	5.0	25.3
Vx12	33.9	1.9	3.5	4.4	-3.8	-3.3	-2.8	5.5	7.8	6.6	17.7
Vx15	31.0	1.5	3.1	3.6	-3.6	-2.8	-2.5	5.0	6.6	7.9	15.1
maxO3v	545.6	51.4	64.4	72.8	-20.3	-23.4	-20.3	25.3	17.7	15.1	799.6

Table: matrice de variance-covariance pour le jeu ozone

Matrices des corrélations

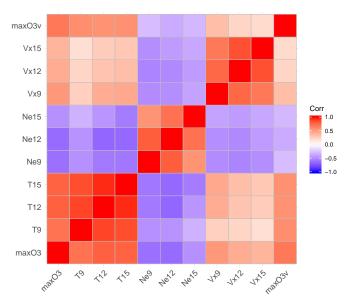
Pour des variables **quantitatives** $p \ge 3$, on peut calculer

- toutes les corrélations entre les couples de variables
- l'ensemble peut se présenter sous la forme d'une matrice R_{p×p} appelée matrice des corrélations
- utile pour l'interprétation

	maxO3	Т9	T12	T15	Ne9	Ne12	Ne15	Vx9	Vx12	Vx15	maxO3v
maxO3	1.0	0.7	0.8	0.8	-0.6	-0.6	-0.5	0.5	0.4	0.4	0.7
T9	0.7	1.0	0.9	0.8	-0.5	-0.5	-0.3	0.3	0.2	0.2	0.6
T12	0.8	0.9	1.0	0.9	-0.6	-0.7	-0.5	0.4	0.3	0.3	0.6
T15	0.8	0.8	0.9	1.0	-0.6	-0.6	-0.6	0.5	0.3	0.3	0.6
Ne9	-0.6	-0.5	-0.6	-0.6	1.0	0.8	0.6	-0.5	-0.5	-0.5	-0.3
Ne12	-0.6	-0.5	-0.7	-0.6	0.8	1.0	0.7	-0.5	-0.5	-0.4	-0.4
Ne15	-0.5	-0.3	-0.5	-0.6	0.6	0.7	1.0	-0.4	-0.4	-0.4	-0.3
Vx9	0.5	0.3	0.4	0.5	-0.5	-0.5	-0.4	1.0	0.8	0.7	0.3
Vx12	0.4	0.2	0.3	0.3	-0.5	-0.5	-0.4	0.8	1.0	0.8	0.2
Vx15	0.4	0.2	0.3	0.3	-0.5	-0.4	-0.4	0.7	0.8	1.0	0.2
maxO3v	0.7	0.6	0.6	0.6	-0.3	-0.4	-0.3	0.3	0.2	0.2	1.0

Table: matrice des corrélations pour le jeu ozone

Représentation graphique



Matrice des coefficients de Cramer

Pour des variables **qualitatives** $p \ge 3$, on peut calculer

- les coefficients de Cramer entre ces différentes variables
- l'ensemble peut se présenter sous la forme d'une matrice
 - symétrique
 - avec des 1 sur la diagonale
 - les coefficients de Cramer pour chaque couple hors de la diagonale
- on peut faire de même avec les coefficients de Tschuprow

Tableau de Burt

Pour *p* variables **qualitatives**

- Le tableau de Burt généralise le tableau de contingence
- C'est la concaténation des différents tableaux de contingence entre chaque couple de variables
- Exemple à 4 variables

Tableau de Burt :

	Q1-1	Q1-2	Q1-3	Q2-1	Q2-2	Q3-1	Q3-2	Q4-1	Q4-2	Q4-3
Q1-1	8	0	0	4	4	3	5	5	2	1
Q1-2	0	8	0	6	2	7	1	3	5	0
Q1-3	0	0	10	4	6	2	8	1	4	5
Q2-1	4	6	4	14	0	10	4	6	6	2
Q2-2	4	2	6	0	12	2	10	3	5	4
Q3-1	3	7	2	10	2	12	0	5	6	1
Q3-2	5	1	8	4	10	0	14	4	5	5
Q4-1	5	3	1	6	3	5	4	9	0	0
Q4-2	2	5	4	6	5	6	5	0	11	0
Q4-3	1	0	5	2	4	1	5	0	0	6

Conclusion

- L'analyse bivariée renseigne sur les liaisons entre variables deux à deux
- Elle peut être représentée graphiquement ou sous forme d'indicateurs
- Le choix de ces indicateurs est propre à la nature des variables considérées
- Elle permet également d'identifier des valeurs aberrantes qui n'auraient pas pu être identifiées par une analyse univariée
- Limite de l'approche : le nombre de couples de variables explose quand le nombre de variables augmente

