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Introduction
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Clustering

Data X = (x;) 1< i< p 2continuous data set

1<j<p
Each individual i belongs to a unique cluster C; € {1, ..., K}.

Aim identify C; for each i based on individual profiles (x;)i<i<n

Methods

Distance-based Model-based
® k-means ® gaussian mixture models
® fuzzy C-means ® mixture of multivariate
® hierarchical clustering t-distributions
® pam
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Clustering with missing values

However, X is frequently incomplete... x; = (x5, xs)
Ad-hoc methods Direct methods
® removing incomplete ® k-means (Chi et al., 2016; Honda et al., 2011,
observations Wagstaff, 2004)
® removing incomplete e fuzzy C-means (Zhang et al., 2016; Hathaway
variables and Bezdek, 2001)
® single imputation ® Gaussian mixture (Miao et al., 2016; Marbac

et al., 2019; de Chaumaray and Marbac, 2020)
Multiple Imputation (M)

® a popular method

® could be used for any clustering method
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Multiple imputation (Rubin, 1987)

@ Generate a set of M parameters ((,,); <<y ©f an imputation
model to generate M plausible imputed data sets
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@® Fit the analysis model on each imputed data set: ¢, Var (’u‘)m)
©® Combine the results using Rubin’s rules

9 1 M
=3 m

T=215M var (7 1M (0 0N
® 7= 3 X Var (V) + 571 L (U — ¥
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Challenges in clustering

Ml is not tailored for cluster analysis

® How to impute the incomplete data set?
® How to “average’ partitions?

® How to assess a “variability” accounting for missing values?

Some works on the “averaging” step

® by stacking (Plaehn, 2019)
® by using consensus clustering methods (Faucheux et al., 2020;

Bruckers et al., 2017; Basagana et al., 2013; Aschenbruck et al.,
2022)

Aim: highlighting how imputation, analysis and pooling steps
should be carried out
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Outline
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complete data

Imputation model for clustering: the issue

incomplete data

imputed data

® cluster 1
® cluster 2
cluster 3

e
n“
\‘731.-' e cluster 1
o ® e cluster 2
i cluster 3
® missing

® cluster 1
® cluster 2
cluster 3
imputed

2 4 6 e 10

2 4 6 8 10

8 10
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JM-DP (Kim et al., 2014)

Joint Modeling based on Dirichlet Process mixture of products of multivariate normal distributions

Based on a Bayesian formulation

[k Tk ~ N (o, 71EL) T ~ WEH(dF, G)
with diag(G) = (g1, .--.8p) & ~ G (a0, bo)

Hk:VkH(l—Vg)

1<k

with { vk ~ Beta(1,a) and o ~ G(aq, by) for k < K
VK = 1

® parameters: ( = (0, pu, X)
® hyperparameters: h, ug, df, ag, by, aa, ba

(Cm)1i<m<m is generated using a Data-Augmentation algorithm
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Properties

JM-DP

® accounts for the heterogeneity

® accounts for the heteroscedasticity

® the number of clusters is only bounded
Modeling assumptions

® based on the normality assumption

R package DPImputeCont (Kim, 2020)
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Fully conditional specification

Instead of specifying one joint distribution P (X; (), a conditional
distribution is specified for each (incomplete) variable

Bx: P (XX ji¢)) =N(XjB,0%) (= (B,0)

To impute the mth data set

e initialize missing values of X

e forjinl..p
a generate (; based on observed individuals on X;
b impute X/™** according to P (Xj|X_j; ()

® repeat until convergence
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FCS-homo (Audigier et al., 2021)

imputed data

<4 A e
. ;9(. R
Addressing the issue by using regres- - {@ P

sion models including the class vari-

able W as explanatory variable .
e cluster 1
® cluster 2
cluster 3
imputed
FCS-homo

® generating Xj”’"55 given W is performed using regression models
including a intercept specific to each cluster

P (Xi|1X—js Wi ) = N(X_jB + pw: 02) ¢ = (B, 0, puw)
e generating W given X by linear discriminant analysis

P(W = w[X;Cy) o exp(dwx)  Cw = (7,1 1)
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Properties

FCS-homo
® addresses the cluster structure
® assumes homoscedastic regression models

e required a pre-defined number of clusters

Can be easily modified
® to account for heteroscedasticity (van Buuren, 2011)
® to improve sparsity (Zahid and Heumann, 2019)
® to address outliers (Templ et al., 2011)

® to use semi-parametric models (Morris et al., 2014)

Available in the R package clusterMI (Audigier and Niang, 2023)
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Analysis

Apply the cluster analysis to each imputed data set: V,,, V,,

V,, — kmeans, GMM, ... for V,,, Fang and Wang (2012) proposed:

® generate C bootstrap pairs
(XC, Xc) from X
1<c<C

® perform cluster analysis from S
(XC,)N(C) to obtain (\UC,\TJC) .
1<c<C

® classify individuals of X from W, and U,
to obtain (\IJ’C, \ﬂ’c)
® the instability V is assessed by averaging
the proportions of disagreements
Figure: Instability (V)
according to the number of

C
1 P
D (WL, ) /n? clusters (K)
c=1

V =

Ol
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Partitions pooling

W, the partition from (X°*, X/}, which average v for (Yo)1<mem?

With complete data Jain (2017) extended to partitions

® the expected mean ® the mean estimate
arg min/ 5 (W, W) dr (W) arg min» 5% (W, ;) (1)
VeP, k JP, VEPnKk 1

with d a dissimilarity, @ € N, Py« the set of with (V;),_;_, a set of observed parti-
partitions of n observations in K clusters tions
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Partitions pooling

W, the partition from (X°*, X/}, which average v for (Yo)1<mem?

With complete data Jain (2017) extended to partitions

® the expected mean ® the mean estimate
arg min/ 5 (W, W) dr (W) arg min» 5% (W, ;) (1)
VeP, k JP, VEPnKk 1
with d a dissimilarity, @ € N, Py« the set of with (V;),_;_, a set of observed parti-
partitions of n observations in K clusters tions
After MI
R M
W = arg min Z §*(V,V,,)  (median partition problem)
L S —
Properties

® Theoretically appealing, but solving (1) is highly challenging
® |terative algorithms are required (Vega-Pons and Ruiz-Shulcloper, 2011)
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Mirkin-based methods

0 chosen as the number of disagreements between partitions
1 if i and i’ belong to the same cluster
JUASE Z(i,i’) Oiir S = in one partition and not in the other
0 otherwise

Two methods can be exhibited
@ BOK: the space of solutions is constrained to (V1,), ., -, instead of P, «
@ SAOM: the BOK solution is improved by using stochastic relabeling of
individuals
Properties

® The error for the BOK solution does not exceed two times the error of
the optimal partition (Filkov and Skiena, 2004)

M M
> 5(Waok, Vi) <2 5(Wopt, Vi)
m=1 m=1

® SAOM provides a better solution, but computationally intensive
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BOK: Proof

Median partition problem: arg min 2,17\/7’:1 o(V,v,,)
VeP, k
For any fixed partition W}, by the triangular inequality

5(\11,.,,, wj) < 5(\Um7 wopt) + 6(wopta \Uj)
M M
=) 5(Um V) <) (Vi Wope) + M x 6(Wope, W)
M M M M
=3 (W W) < M XY 6, Wope) + MDY 5(Wope, W)
j=1 m m j=1

M
< M2 5(Vm Vop)
m

= the BOK is never greater than 2 ZZ 0(Vrm, Wopt) (Pigeonhole principle)
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NMF-based methods

Non negative matrix factorization is powerful method widely used for
solving many optimization problems
Principle

® consider the Mirkin distance for §

® rewrite the optimization problem in terms of connectivity matrices
(Um)i<mep instead of partitions (W), <,

M
argmin Z S(W,V,,) <= argmin || U — U ||?
VePK T Ueu
with 0 =L 5" u,
Properties
® can be solved using various algorithms (Lee and Seung, 2001; Li et al., 2007)
® monotone convergence

® no label switching problem, various choices for K are available
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Instability after M| (Audigier and Niang, 2022)

Following Fang and Wang (2012), the within instability can be assessed
by

1M
DL
m=1
while the between instability can be computed by averaging the
proportions of disagreements

1 M M
7 S (VW) /n

m=1m'=1

the total instability T is

1 M M
+WZ 25 Vo, W)/

m=1m'=1

3
Il

N
I—‘M§
<
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Properties

Based on a simulation study

® pooling partitions using NMF-based methods is less time
consuming and more accurate than Mirkin-based methods

® a larger value for M improves the partition accuracy (M = 20)

e T provides an accurate estimate for the number of clusters
with missing values
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Direct Methods

k-POD (Chi et al., 2016)

Chi et al. (2016) proposed a direct method for k-means clustering

k-means k-POD
arg min || X — AB ||2 arg min || Pq (X)—Pq (AB) ||2
AcH,B AcH,B

‘H set of membership matrices (n x k), Bkxp matrix of centers coordinates

| . ||F Frobenius norm

Qc{L,...,n} x{1,...,p} — subset of the indices for observed entries

Xjj if (I,j) e

® Pq projection operator so that [Po(X)]j = { 0 otherwise

The criterion is optimised by alternating imputation by bx and kmeans
clustering

Available in the kpodclustr R package
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FCM by optimal completion strategy (Hathaway and Bezdek, 2001)
fuzzy c-means

argmin
P

ZZW?

fuzzy c-means OCS

argmin
I— B XmISS
2 obs mlss 2
i — bic |I2 E E Yiei || (x ) — bi [I2
i=1 k=1 i=1 k=1
with I' = (ki) 1<k <k degrees of membership; o fuzzification parameter
<i<n
centers

The criterion is optimised by alternating FCM and imputation by weighted

Z (H xi — be |3

| xi — be Hz)

K K
- )
by - (Zv) /()
i=1 i=1
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Ignorable-GMM (Marbac et al., 2019)

Gaussian mixture models (GMM)

FOG0) =D mifi(i0k) 0= (0k)1cher Ok = (i, Tk)

Log-likelihood GMM Log-likelihood ignorable-GMM
Z/ongkakJ Xij 0/(1) Z/ogZTrkakj Xijs ij
i=1 j= i=1 = JjE€O;

0O; C1,...,p the subset of variables indices that are observed for
individual 7

The criterion is optimised by using an EM algorithm
Available in the VarSelLCM R package
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Outline

O Simulation study
Simulated data
Real data
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Simulation study
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Simulation design: data generation

Complete data generation

® A base-case configuration: GMM with K = 3 components

w0

(0,0,0,0,A,A,0,A2)

pr o = _ 1 p p p
Y= O 1

pe = (0,0,0,0,-A,-A,~A,0) A

p P p

ps = (0,0,0,0,—A,A,A,—A?) pp op 1

nk = 250 (for all kin {1,2,3}), A=2p=0.3

® 10 other configurations varying: the separability between clusters, the number of
clusters, the cluster size, the balance between clusters sizes and the
heteroscedasticity.

Missing data generation
® MCAR: Prob(rj =0) =T Vi, j
® MAR: Prob(rj = 0) = ®(a- + x;1) vi#1
® 7€ {10%,25%,40%}
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Simulation design: evaluation

For each incomplete data set (200 per configuration)
Multiple Imputation Direct Methods
@ Imputation (M = 20, using JM-DP)
® Cluster analysis

® k-means ® k-POD (Chi et al., 2016) from the
kpodclustr R package

e fuzzy c-means ® FCM by optimal completion strategy
(Hathaway and Bezdek, 2001)

e clustering by GMM ® |gnorable-GMM (Marbac et al., 2019)

from the VarSelLCM R package
©® Pooling by NMF

Criteria ARI, Full data
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Results: base-case, MAR

model-I kmeans model-I cmeans model-I gmm
MAR 10% MAR 25% MAR 40% MAR 10% MAR 25% MAR 40% MAR 10% MAR 25% MAR 40%

T TR FTRE i TR RN e
Il 1Al . "o
. ot by o

050 :
< — direct

ES i

0.25

0.00
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Results: base-case, MCAR

model-I kmeans model-I cmeans model-I gmm
MCAR 10% VICAR 25% ICAR 40% WVCAR 10% VICAR 25% VICAR 40% VICAR 10% VICAR 25% VICAR 40%

JINIEaNINE: alinn T

Method

B

050
< — direct

ES i

0.25

0.00
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Summary

Based on simulated data under mixture model distribution

e Ml outperforms direct methods for kmeans and fuzzy ¢ means
e MI and direct methods provide similar ARI for GMM

e Differences between Ml and direct method highlighted for
kmeans with more separated clusters

e Similar results by modifying the number of clusters, the cluster
size, the balance between clusters sizes and the
heteroscedasticity
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Real data sets

Data
Variables Size of cluster o GaUSSian aSSUmptiOn
n P Type Number for which K Silhouette (min) (max)
Shapiro rejects Index seems not observed
normality
wine 76 13 Real 7 3 057 B 71 ® p large
ovarian 216 100 Real 64 2 050 95 121
iris 150 4 Real 1 3052 50 50 ® 1, small compared to p
glass 214 9 Real 9 2 056 51 163
breast cancer 699 9 Discrete 9 2 059 241 458 ° partitions not obvious
Simulation design
Data sets generation Data sets analysis

® 25% missing values (MCAR or e missing values are addressed by MI
a MAR mechanism) (FCS-homo, M = 20)

® 200 missing data patterns per e cluster analysis by k-means, fuzzy
mechanism c-means or GMM

® pooling using NMF
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Real data, MCAR

kmeans kmeans kmeans kmeans kmeans

iris ovarian wine glass cancer
1.00-
0.75- . -+ —_— =
0.50- ; —— t
0.25- e

——
0.00-
cmeans cmeans cmeans cmeans cmeans

iris ovarian wine glass cancer
1.00- Method
0.75- == - )

o ] -I- === + - direct
& o050 +

0.25" mlem E’ M
0.00-

gmm gmm gmm gmm gmm

iris ovarian wine glass cancer
1.00-
0.75- s== f * %
0.50- -t * %
0.25- be !
0.00- s
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Real data, MAR

Simulation study
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AR
cooor

cooor

cooor

kmeans
iris
00-
75-
50- + +
25- i
00-
cmeans
iris
00-
75- . -
50-
25- §
00-
gmm
iris
00-
75- 2
50-
25-
00-

kmeans
ovarian

cmeans
ovarian

kmeans
wine

_I_

cmeans
wine

kmeans
glass

-+

—_——

cmeans
glass

S+
_— = 4T

gmm
ovarian

gmm
wine

——

=T=

gmm
glass

ot

kmeans
cancer

—t—

—t—

cmeans
cancer

+

gmm
cancer

L

Method

- direct
==
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Conclusion
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Take-home message

Ml is a competitive method for addressing missing values in clustering
e for model-based or distance-based methods
® good performances on real data
In practice
e A suitable imputation model is required
® A large value for M is recommended
® The number of clusters can be easily estimated
® MI method is available in the clusterMI R package
Some perspectives
® Addressing mixed data
® Developing indices for clustering with missing values
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